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SOLUTION OF THE STOCHASTIC BOUNDARY-VALUE PROBLEM

OF STEADY-STATE CREEP FOR A THICK-WALLED TUBE

USING THE SMALL-PARAMETER METHOD

UDC 539.376A. A. Dolzhkovoi, N. N. Popov, and V. P. Radchenko

The physically and statistically nonlinear problem of steady-state creep for a thick-walled tube loaded
by internal pressure is solved in the third approximation using the small-parameter method. The
variances of random creep strain rates and displacements are calculated. The results obtained are
compared with the solution of the same problem in the first and second approximations. A reliability
assessment method for the tube using the strain failure criteria is proposed.

Key words: stochastic heterogeneity, statistical nonlinearity, steady-state creep, thick-walled tube,
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1. The substantial effect of random perturbations of the mechanical characteristics of materials on the
stress and strain fields and the need for developing the corresponding stochastic models for strength analysis were
discussed in many papers (see, e.g., [1–3]). This problem is of utmost importance for creep strain, for which the
spread of experimental values is as high as 50–70% and one has to consider these results as acceptable [3–5].

Determining the strains and stresses of structural members subjected to nonlinear-creep conditions is a very
difficult problem even in the deterministic formulation. The necessity of considering the microheterogeneities of
the material leads to stochastic boundary-value problems, in which statistical nonlinearity should be taken into
account in addition to the physical nonlinearity of the governing equations. Because of these difficulties, stochastic
boundary-value creep problems admit analytical solutions only in the simplest cases [6–9].

To solve stochastic boundary-value problems in elastic and creep regions, the small-parameter method is
used [6–10]. However, owing to substantial difficulties that arise in calculating the second and higher order moments
of a random function, this method provides solutions of the stochastic boundary-value problems of steady-state creep
only in the first approximation [6, 8].

In the present paper, the analytical solution of the boundary-value problem of steady-state creep of a thick-
walled tube loaded by internal pressure is constructed to the third approximation using the small-parameter method.

We consider this problem in cylindrical coordinates for plane strain [εz(r, t) = 0 or ε̇z(r, t) = 0], assuming
that the stochastic heterogeneities of the tube material are described by a function of one variable — the radius r.
In this case, the components of the strain and stress tensors are random functions of the radius r.

In accordance to the theory of viscous flow (steady-state creep), the creep strains εr and εϕ are described
by the following rheological relations in stochastic form [9]:

ε̇r = −(
√

3/2)c(σϕ − σr)n[1 + αU(r)],

ε̇ϕ = (
√

3/2)c(σϕ − σr)n[1 + αU(r)].
(1)

Here σr and σϕ are the radial and hoop stresses, respectively, U(r) is the random function governing the stochastic
heterogeneity of the tube material, whose statistical characteristics are known: 〈U〉 = 0 and 〈U2〉 = 1, α is the
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coefficient of variation of the mechanical properties (0 < α < 1), c and n are the material constants, and 〈 · 〉 denotes
the mathematical expectation.

The stresses σr and σϕ satisfy the differential equation of equilibrium

dσr

dr
+

σr − σϕ

r
= 0 (2)

and the boundary conditions

σr(a) = −q, σr(b) = 0, (3)

where a and b are the inner and outer radii of the tube, respectively, and q is the pressure.
The strain-rate tensor components satisfy the compatibility condition

r
dε̇ϕ

dr
+ ε̇ϕ − ε̇r = 0. (4)

We consider the problem of determining the stress–strain state of the tube, which reduces to solving sys-
tem (1), (2), and (4) for the stresses subject to boundary conditions (3). This system can be reduced to a second-
order statistically nonlinear equation for the radial stress (the prime denotes differentiation with respect to r):

r(1 + αU(r))σ′′
r +

(n + 2
n

(1 + αU(r)) +
r

n
αU ′

r

)
σ′

r = 0. (5)

To construct approximate analytical solutions of this equation, we expand the radial stress σr in power series of the
small parameter α:

σr = σr0 +
∞∑

k=1

αkσrk, 〈σr〉 = σr0. (6)

Substituting (6) into Eq. (5) and equating the coefficients of the same powers of α, we obtain the system

rσ′′
r0 +

n + 2
n

σ′
r0 = 0; (7)

rσ′′
r1 +

n + 2
n

σ′
r1 = − r

n
U ′σ′

r0; (8)

rσ′′
rk +

n + 2
n

σ′
rk = − r

n
U ′[σ′

rk−1 − Uσ′
rk−2 + U2σ′

rk−3 − . . . + (−1)k−1Uk−1σ′
r0],

k = 2, 3, 4, . . . .
(9)

The solution of this system in recursive form involves computational difficulties. Therefore, we confine
ourselves to the system of the first four equations. It comprises Eqs. (7) and (8) and the following two equations
obtained from (9) for k = 2, 3:

rσ′′
r2 +

n + 2
n

σ′
r2 = − r

n
U ′(σ′

r1 − Uσ′
r0); (10)

rσ′′
r3 +

n + 2
n

σ′
r3 = − r

n
U ′(σ′

r2 − Uσ′
r1 + U2σ′

r0). (11)

System (7), (8), (10), (11) subject to boundary conditions (3) has the solution

σr0 = A[b−2/n − r−2/n]; (12)

σr1 =
2A

n2

[
(a−2/n − r−2/n)H1 − I1(r)

]
; (13)

σr2 =
2A

n2

[n + 1
2n

I2(r) − 2H1

n2
I1(r) + C1(a−2/n − r−2/n)

]
; (14)

σr3 =
2A

n2

[
− 2n2 + 3n + 1

6n2
I3(r) +

(n + 1)H1

n3
I2(r) − 2

n2
C1I1(r) + C2(a−2/n − r−2/n)

]
, (15)
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where
A = q/(a−2/n − b−2/n); Hk = BIk(b) (k = 1, 2, 3); B = 1/(a−2/n − b−2/n);

Ik(r) =

r∫

a

Uk(x)x−1−2/n dx (k = 1, 2, 3);

C1 =
2H2

1

n2
− n + 1

2n
H2; C2 =

2n2 + 3n + 1
6n2

H3 − n + 1
n3

H1H2 +
2
n2

C1H1.

Expression (12) is the well-known deterministic solution [11] and expressions (13)–(15) are solutions that correspond
to the stochastic formulation of the problem. Thus, solution (12)–(15) determines the radial stress σr in the third
approximation.

We now find approximate values of the strain-rate tensor components ε̇r and ε̇ϕ given by (1). Using solu-
tions (12)–(15) and (2), the quantity σϕ − σr from relations (1) is written as

σϕ − σr = r(σ′
r0 + ασ′

r1 + α2σ′
r2 + α3σ′

r3). (16)

Raising the left and right sides of relation (16) to the nth power and substituting the resulting relation into (1), we
obtain the component ε̇ϕ:

ε̇ϕ = rn(σ′
r0 + ασ′

r1 + α2σ′
r2 + α3σ′

r3)
n(1 + αU).

Expanding the power function (σ′
r0 + ασ′

r1 + α2σ′
r2 + α3σ′

r3)
n in a Taylor series in α and retaining terms of

up to the third order of smallness, after simple manipulations we obtain

ε̇ϕ =
T

r2

[
1 +

2α

n
H1 +

2α2(n + 1)
n3

H2
1 − α2(n + 1)

n2
H2 +

α3(2n2 + 3n + 1)
3n3

H3

− 2α3(n + 1)2

n4
H1H2 +

4α3(n + 1)(n + 2)
3n5

H3
1 + o(α3)

]
= −ε̇r, (17)

where T = (
√

3)n−1cAn/nn.
With allowance for (17), the displacement function becomes

u(t) = εϕr = (ε̇ϕt)r = T
t

r

[
1 +

2α

n
H1 +

2α2(n + 1)
n3

H2
1 − α2(n + 1)

n2
H2

+
α3(2n2 + 3n + 1)

3n3
H3 − 2α3(n + 1)2

n4
H1H2 +

4α3(n + 1)(n + 2)
3n5

H3
1 + o(α3)

]
. (18)

2. Let us find the statistical characteristics of the radial displacement u(t). We calculate these characteristics
assuming that the random function U(r) governing the random field of perturbations of the mechanical properties
of the material is distributed according to a normal law. In this case, the moments of odd orders vanish and the
central moments of even orders are expressed in terms of the second-order moments. For example, the fourth-order
moments are calculated by the formula [12]:

〈I̊1I̊2I̊3I̊4〉 = k12k34 + k13k24 + k14k23, (19)

where I̊k are centered random quantities and kij are the second-order moments. All second-order moments are
expressed in terms of the moments of the random function Ik(r) as follows:

〈I1(r)〉 =

r∫

a

〈U(x)〉x−1−2/n dx = 0,

〈I2
1 (r)〉 =

r∫

a

r∫

a

〈U(x1)U(x2)〉x−1−2/n
1 x

−1−2/n
2 dx1 dx2 =

r∫

a

r∫

a

K(x2 − x1)x
−1−2/n
1 x

−1−2/n
2 dx1 dx2,

〈I2(r)〉 =

r∫

a

〈U2(x)〉x−1−2/n dx =

r∫

a

x−1−2/n dx =
n

2
(a−2/n − r−2/n),

(20)

〈I3(r)〉 =

r∫

a

〈U3(x)〉x−1−2/n dx = 0,

where K(x2 − x1) is a correlation function of the random homogeneous field U(r).
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Taking into account formulas (20), we write the mean displacements as

Mu = 〈u(t)〉 = T
t

r

[
1 +

2α2(n + 1)〈H2
1 〉

n3
− α2(n + 1)〈H2〉

n2
+ o(α3)

]
. (21)

Considering expressions (17) and (18) as the sums of dependent random functions, we obtain the variances
of the random displacements and random strain rates

Du = D[u(t)] = T 2 t2

r2

[4α2

n2
D[H1] +

4α4(n + 1)2

n6
D[H2

1 ] +
α4(n + 1)2

n4
D[H2]

+
α6(2n2 + 3n + 1)2

9n6
D[H3] +

4α6(n + 1)4

n8
D[H1H2] +

16α6(n + 1)2(n + 2)2

9n10
D[H3

1 ]

+
4α4(2n2 + 3n + 1)

3n4
〈H̊1H̊3〉 − 12α4(n + 1)2

n5
〈H̊2

1 H̊2〉 +
16α4(n + 1)(n + 2)

3n6
〈H̊4

1 〉

− 4α6(2n2 + 3n + 1)(n + 1)2

3n7
〈H̊1H̊2H̊3〉 +

8α6(2n2 + 3n + 1)(n + 1)(n + 2)
9n8

〈H̊3
1 H̊3〉

− 16α6(n + 1)3(n + 2)
9n9

〈H̊4
1 H̊2〉 + o(α6)

]
; (22)

D[ε̇ϕ] = D[ε̇r] = Du/(t2r2). (23)

Using (19), we write each term in formulas (21)–(23) as follows:

D[H1] = 〈H2
1 〉 = B2IK(n),

D[H2
1 ] = 〈H̊4

1 〉 = 3〈H2
1 〉2 = 3B4(IK1(n))2, 〈H2〉 = B〈I2(b)〉 = n/2,

D[H2] = 〈H̊2
2 〉 = B2

b∫

a

b∫

a

〈U2(x1)U2(x2)〉x−1−2/n
1 x

−1−2/n
2 dx1 dx2 =

n2

4
+ 2B2IK2(n),

D[H3] = 〈H̊2
3 〉 = B2

b∫

a

b∫

a

〈U3(x1)U3(x2)〉x−1−2/n
1 x

−1−2/n
2 dx1 dx2 = 9B2IK1(n),

D[H1H2] = 〈H̊2
1 H̊2

2 〉 = B4

b∫

a

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U2(x3)U2(x4)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 dx1 dx2 dx3 dx4

= (n2/4)B2IK1(n) + (n/2)B3IK3(n) + 2B4(IK1(n))2 + 4B4IK4(n),

D[H3
1 ] = 〈H̊6

1 〉 = B6

b∫

a

b∫

a

b∫

a

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U(x3)U(x4)U(x5)U(x6)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 x

−1−2/n
5 x

−1−2/n
6 dx1 dx2 dx3 dx4 dx5 dx6 = 9B6(IK1(n))3,

〈H̊2
1 H̊2〉 = B3

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U2(x3)〉x−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 dx1 dx2 dx3 = (n/2)B2IK1(n) + 2B3IK3(n),

137



〈H̊1H̊3〉 = B2

b∫

a

b∫

a

〈U(x1)U3(x2)〉x−1−2/n
1 x

−1−2/n
2 dx1 dx2 = 3B2IK1(n),

〈H̊4
1 〉 = B4

b∫

a

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U(x3)U(x4)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 dx1 dx2 dx3 dx4 = 3B4(IK1(n))2,

〈H̊1H̊2H̊3〉 = B3

b∫

a

b∫

a

b∫

a

〈U(x1)U2(x2)U3(x3)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 dx1 dx2 dx3 = (3n/2)B2IK1(n) + 6B3IK3(n),

〈H̊3
1 H̊3〉 = B4

b∫

a

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U(x3)U3(x4)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 dx1 dx2 dx3 dx4 = 9B4(IK1(n))2,

〈H̊4
1 H̊2〉 = B5

b∫

a

b∫

a

b∫

a

b∫

a

b∫

a

〈U(x1)U(x2)U(x3)U(x4)U2(x5)〉

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 x

−1−2/n
5 dx1 dx2 dx3 dx4 dx5

= (3n/2)B4(IK1(n))2 + 6B5IK1(n)IK3(n),

where

IK1(n) =

b∫

a

b∫

a

K(x2 − x1)x
−1−2/n
1 x

−1−2/n
2 dx1 dx2;

IK2(n) =

b∫

a

b∫

a

K2(x2 − x1)x
−1−2/n
1 x

−1−2/n
2 dx1 dx2;

IK3(n) =

b∫

a

b∫

a

b∫

a

K(x2 − x1)K(x3 − x2)x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 dx1 dx2 dx3;

IK4(n) =

b∫

a

b∫

a

b∫

a

b∫

a

K(x2 − x1)K(x3 − x2)K(x4 − x3)

× x
−1−2/n
1 x

−1−2/n
2 x

−1−2/n
3 x

−1−2/n
4 dx1 dx2 dx3 dx4.

3. As follows from the formulas given above, a relation for the correlation function should be given to
calculate the variances.

Statistical processing of test data shows that the correlation functions of the mechanical characteristics are
sign-variable decaying functions [13, 14] and can be approximated by the expression

K(ρ) = e−γ|ρ|(cos (βρ) + (γ/β) sin β|ρ|), ρ = x2 − x1, γ > 0, (24)

where γ and β are constant quantities determined from the condition of the best fit to experimental data.
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Fig. 1. Variances of the reduced strain rates versus r for various n (α = 0.3).

Fig. 2. Variances of the reduced strain rates in the first (solid curves), second (dotted curves), and
third (dashed curves) approximations for various α (n = 5).

The second-order moments were calculated under the assumption that the correlation function of the random
uniform and one-dimensional heterogeneity field U(r) is given by (24) with the following numerical values of the
parameters: γ = 10 and β = 20.

The goal of the further studies was to analyze the effect of the second and third approximations, the
exponent n which takes into account the steady-creep nonlinearity, and the variation coefficient α on the variances
of the strain rates ε̇r and ε̇ϕ.

Numerical analysis of a thick-walled tube with inner and outer radii a = 1 and b = 2, respectively, shows
that the variances of the reduced strain rates D[ε̇r/(cqn)] and D[ε̇ϕ/(cqn)] increase with n, the maximum variances
occurring near the inner surface of the tube and the minimum values occurring near the outer surface. This finding
is illustrated by plots of the variances as functions of the radius r (Fig. 1). Figure 2 shows the difference between
the variances calculated in the first, second, and third approximations, which are represented by solid, dotted, and
dashed curves, respectively. In the inset of Fig. 2, a section of the diagram shown in Fig. 1 is given for r = 1.5 and
α = 0.3, which shows the dependence of the variances on n, along with variance curves calculated in the second
and third approximations.

Numerical values of the variances of the reduced strain rates are listed in Table 1 for various n and α and
r = 1.5. The values calculated by retaining only the first term, the first two terms, and the first three terms in the
expansion series are given in columns D1, D2, and D3, respectively.

One can see from Figs. 1 and 2 and Table 1 that, for slightly heterogeneous materials (α = 0.1–0.2), the values
of the strain-rate variances differ only slightly. For materials with a high degree of heterogeneity (α = 0.4–0.5), the
values of the strain-rate variances calculated in the third approximation can exceed those calculated in the second
and first approximations by a factor of one and a half and two, respectively. In this case, the values of the strength
and reliability margins of the thick-walled tube are highly overestimated if terms of the third order of smallness are
ignored.

4. The performance of many structural members is estimated by parametric (strain) failure criteria. It is
obvious that the reliability assessment of structural members using deterministic models is a first (and in some cases,
unreliable) approximation and ignores the natural scatter of the mechanical characteristics and output parameters.
The stochastic estimates of the creep strains and displacements obtained above allow one to solve the reliability
problem of a thick-walled tube using the strain failure criterion in a statistical formulation.

139



TABLE 1

Variances of the Reduced Strain Rates
in the First (D1), Second (D2), and Third (D3) Approximations for Various n and α

α n D1 D2 D3

1 0.0006 0.0006 0.0006
3 0.0013 0.0013 0.0013

0.1
5 0.0030 0.0031 0.0031
7 0.0074 0.0076 0.0076
9 0.0179 0.0184 0.0185
11 0.0437 0.0447 0.0451

1 0.0023 0.0028 0.0029
3 0.0050 0.0057 0.0059

0.2
5 0.0121 0.0135 0.0140
7 0.0294 0.0325 0.0337
9 0.0717 0.0788 0.0816
11 0.1747 0.1914 0.1980

1 0.0051 0.0079 0.0085
3 0.0113 0.0147 0.0159

0.3
5 0.0272 0.0342 0.0367
7 0.0663 0.0818 0.0877
9 0.1613 0.1973 0.2114
11 0.3930 0.4777 0.5115

1 0.0092 0.0178 0.0199
3 0.0200 0.0309 0.0346

0.4
5 0.0484 0.0704 0.0786
7 0.1178 0.1668 0.1859
9 0.2868 0.4004 0.4459
11 0.6987 0.9664 1.0748

1 0.0141 0.0355 0.0408
3 0.0313 0,0578 0,0671

0.5
5 0.0757 0.1293 0.1497
7 0.1841 0.3037 0.3513
9 0.4482 0.7254 0.8383
11 1.0918 1.7454 2.0154

We estimate the reliability of a thick-walled tube for the case where the service life is determined by the
moment the displacement u(t) reaches a certain value u∗.

Let the failure-free operation of the tube be given by the condition

u(t) < u∗,

where u∗ is a specified deterministic quantity. In this case, the reliability function P (t) governing the probability
of failure-free operation in the interval [0, t] is equal to the probability that the values of the random function u(t)
are in the admissible region (0, u∗) within this time interval [1]:

P (t) = P{u(τ) ∈ (0, u∗), τ ∈ [0, t]}. (25)

If the function u(t) leaves the interval (0, u∗) at a certain time, it cannot enter this interval again because
the creep displacement is an increasing function. In view of this, we obtain the following simpler formula for the
probability of failure-free operation P (t) in the time interval [0, t] [1]:

P (t) = P{u(t) ∈ (0, u∗)}. (26)

Unlike in the general case (25), where it is necessary to consider the spikes of the random process in calculating
the random function, in our case, it suffices to calculate the probability that the random function u(t) is in the
specified region at the given time using expressions (21) and (22) for the main characteristics of the displacement
function u(t).

To illustrate the reliability assessment method, we consider the creep of a pressurized thick-walled tube made
of 12KhMF steel (T = 590◦C) with material constants c = 3.03 · 10−14 and n = 7.1. The inner and outer radii

140



1 2 3

0.4

0.8

1.6

1.2

0 4 t.10-4
, h

u, mm

Fig. 3. Statistical estimate of the displacement of the inner surface of a thick-
walled tube made of 12KhMF steel (T = 590◦C) with inner and outer radii
a = 14 mm and b = 16.68 mm, respectively, loaded by an internal pressure of
q = 28 MPa.
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Fig. 4. Reliability function P (t) for a thick-walled tube from 12KhMF steel
(T = 590◦C) with inner and outer radii a = 14 mm and b = 16.68 mm,
respectively, loaded by an internal pressure of q = 28 MPa (u∗ = 1 mm).

are a = 14 mm and b = 16.68 mm, respectively, the heterogeneity exponent is α = 0.3, and the internal pressure
is q = 28 MPa [15]. As a parameter determining the service life of the tube, we use the displacement of the inner
surface, whose critical value is u∗ = 1 mm.

The calculation yielded the following main characteristics of the random displacements of the inner sur-
face: mathematical expectation Mu = 〈u(t)〉 = 3.52 · 10−5t and variance and root-mean-square deviation Du(t)
= 3.78 · 10−12t2 and su(t) = 1.946 · 10−6t for the first approximation and Du(t) = 7.82 · 10−12t2 and su(t)
= 2.796 · 10−6t [su(t) =

√
Du(t) ] for the third approximation.

As an example, Fig. 3 shows the calculated values of the mathematical expectation for the displacement of
the inner surface (solid thick curve) and intervals u(t) ± 3su(t) for the first approximation (solid thin curves) and
third approximation (dashed curves).

The calculations show that for the given level of u∗ = 1 mm, the mathematical expectation for the dis-
placement u(t) is reached after 28,431 h and its three-sigma band is 24,383–34,091 h for the first approximation
and 22,956–37,337 h for the third approximation. It follows from the above example that the third approximation
substantially refines the reliability estimate.
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Using formula (26), the probability of failure-free operation is given by

P (t) =
1√

2π su(t)

u∗∫

0

e−(x−〈u(t)〉)2/(2s2
u(t)) dx

or

P (t) = Φ
[u∗ − 〈u(t)〉

su(t)

]
+ Φ

[ 〈u(t)〉
su(t)

]
,

where Φ(x) is a Laplace function:

Φ(x) =
1√
2π

x∫

0

e−z2/2 dz.

The probability P (t) can be used to determine the service life of a thick-walled tube. The design service
life T∗ is determined so that the probability of ensuring T∗ is equal to the specified probability of failure-free
operation p∗. In this case, the probability p∗ should be reasonably close to unity.

Figure 4 shows the probability of failure-free operation of the tube versus time for u∗ = 1 mm. One can
see from Fig. 4 that for the given value u∗ = 1 mm, the service life of the tube is t = 25,143 h for a probability of
p∗ = 0.95.

In summary, the proposed method for constructing approximate analytical solutions of stochastic boundary-
value problems under nonlinear steady-creep conditions can be used to update existing models and solve the problem
of assessing the reliability of cylindrical structural members.
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